Dialectic interactions between the Sustainable Development Goals (SDG´s), the 2030 Agenda, planetary boundaries (PB) and good agricultural practices (GAP) in agroecosystems with oil palm have rarely been discussed. The main goal of this publication is analyzing reflections and realities about interactions between the 17 SDGs, the 2030 Agenda, nine PB and GAP in agroecosystems with oil palm. The methodological approach included the results of the different field practices during the First International Course of agroecological oil palm production in the Soconusco and consisted of a documentary analysis and focus group discussions. This offered possibilities to analyze qualitative and participative results of the traffic light system methodology (TLSM) and its key issues. The area of oil palm growing in the Soconusco and Istmo-Costa covers 4.37 % and was planted without burning of forestland. The SDG´s that are most strengthened with correct and timely management of the 13 key issues of TLSM, are: SDG2 (Zero Hunger), SDG3 (Good Health), SDG15 (Life on Earth), SDG6 (Clean Water and Sanitation), SDG13 (Climate Action) and SDG1 (Ending Poverty), being addressed in 100%, 69%, 69%, 54%, 54% and 31% of the key issues of the TLSM, respectively. Five PB reflect the realities in the Soconusco. For the biosphere integrity in the oil palm agroecosystems of the Soconusco, the oil palm stands out with growth recordings up to 10 m eco-height and 100000 m³/ha eco-volume, outperforming the annual oil crops sunflower, rapeseed and soybean. Similarly, oil palm dominates the three annual crops for their respective Eco-capacity, decreasing from 41.54 for oil palm down to 0.3 for soybean. The biochemical flow in the oil palm agroecosystems of the Soconusco reveals that the extraction of N from the soil to produce one ton of palm oil is 47 kg, which is 110.6%, 104.3% and 570% lower than that extracted to produce one ton oil of rapeseed, sunflower and soybean, respectively. Additionally, one ton of palm oil extracts 8 kg of P from the soil, which is lesser than that extracted to produce one ton oil from rapeseed, sunflower and soybean. In all intercropping agroecosystems simulations in the Soconusco based on oil palm the most representative indicators of the combined intercrop assortment, are eco-capacity and/or recycling indices as e.g. the K-Olson index of total yearly litter fall. Eco-volume remains a major yardstick for monitoring the partial fulfillment of the five most relevant PB.
Published in | International Journal of Applied Agricultural Sciences (Volume 10, Issue 6) |
DOI | 10.11648/j.ijaas.20241006.11 |
Page(s) | 259-274 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Oil palm Agroecosystems in Soconusco, Planetary Boundaries, SDG´s, GAP, TLSM, Biosphere Integrity, Biochemical Flows, Climate Change, Land-System Change, Freshwater Use, Eco-Volume
[1] |
Marroquín Agreda FJ, Pohlan HAJ, Salazar Centeno DJ, Villarreal Fuentes JM (Eds.). Manual para el productor de palma de aceite en México. 2023; Shaker Verlag Düren, 268 pp., 81 figuras, 14 cuadros, ISBN 978-3-8440-9269-1.
https://doi.org/10.2370/9783844092691 (Online-Gesamtdokument) |
[2] | Ayompe LM, Schaafsma M, Egoh BN. Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. Journal of Cleaner Production. 2021; 278: 123914. |
[3] | Meijaard E, Sheil D. The Moral Minefield of Ethical Oil Palm and Sustainable Development. Front For Glob Change. 2019; 2: 22. |
[4] | Padfield R, Hansen S, Davies ZG, Ehrensperger A, Slade EM, Evers S, Papargyropoulou E, Bessou C, Abdullah N, Page S, Ancrenaz M, Aplin P, Dzulkafli SB, Barclay H, Chellaiah D, Choudhary S, Conway S, Cook S, Copeland A, Campos-Arceiz A, Deere NJ, Drew S, Gilvear D, Gray R, Haller T, Hood AS-C, Huat LK, Huynh N, Kangayatkarasu N, Koh LP, Kolandai SK, Lim RAH, Yeong KL, Lucey JM, Luke SH, Mitchell SL, Montefrio MJ, Mullin K, Nainar A, Nekaris K-I, Nijman V, Nunes M, Nurhidayu S, O’Reilly P, Puan CL, Ruppert N, Salim H, Schouten G, Tallontire A, Smith TEL, Tao H-H, Tham MH, Varkkey H, Wadey J, Yule CM, Azhar B, Sayok AK, Vairappan C, Bicknell JE, Struebig MJ. Co-producing a Research Agenda for Sustainable Palm Oil. Frontiers in Forests and Global Change. May 2019; | Volume 2 |, Article 13. |
[5] | FAO. Oil plants. 2023; Available from: |
[6] | FONAP. Das Forum Nachhaltiges Palmöl (FONAP). 2023; Available from: |
[7] | OIT & MPT. Cadeia Produtiva do Óleo de Palma - Avanços e Desafios rumo à Promoção do Trabalho Decente: Análise Situacional: Documento de Discussão para a promoção do diálogo social no contexto do Projeto “Promoção e Implementação dos Princípios e Direitos Fundamentais no Trabalho no Brasil”. Organização Internacional do Trabalho (OIT) & Ministério Público do Trabalho (MPT). 2020; ISBN: 9789220337233 (Web PDF), 72 pp. |
[8] | Grass I, Kubitza C, Krishna VV et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat Commun. 2020; 11: 1186. |
[9] | Meijaard E, Brooks TM, Carlson KM, Slade EM, Garcia-Ulloa J, Gaveau DLA, Huay Lee JS, Santika T, Juffe-Bignoli D, Struebig MJ, Wich SA, Ancrenaz M, Pin Koh L, Zamira N, Abrams JF, Pins HHT, Sendashonga CN, Murdiyarso D, Furumo PR, Macfarlane N, Hoffmann R, Persio M, Descals A, Szantoi Z, Sheil D. The environmental impacts of palm oil in context. 2020; Review article. Nature Plants, December 2020; Vol. 6, 1418-1426. |
[10] | Ritchie H, Rosado P, Roser M. Crop Yields. 2024. |
[11] |
Shahbandeh M. Production of major vegetable oils worldwide from 2012/13 to 2023/2024, by type (in million metric tons). 2024.
https://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/ |
[12] | Mekonnen MM, Hoekstra AY. The green, blue and grey water footprint of crops and derived crops products. Hydrol. Earth Syst. Sci., 15, 1577–1600, 2011. |
[13] | Searchinger TD, Wirsenius S, Beringer T. et al. Assessing the efficiency of changes in land use for mitigating climate change. Nature. 2018; 564, 249–253. |
[14] | Diplomado Internacional - Producción Agroecológica de la Palma de Aceite. Universidad Autónoma de Chiapas, Facultad de Ciencias Agrícolas, Campus IV. Cuerpo Académico: UNACH–CA-146 “Producción Agrícola Sostenible” y Consejo Regional de Palmicultores del Soconusco A. C. 2023; 10 pdf. |
[15] | Glatzle A, Ferguson JD, Happer W, Moore M, Ritchie G, Soepyan FB, Wrightstone G. Nutritive-Value-of-Plants-Growing-in-Enhanced-CO2-Concentrations-2024-04-22.pdf |
[16] | Ngan SL, Er AC, Yatim P, How BS, Lim CH, Ng WPQ, Chan YH, Lam HL. Social Sustainability of Palm Oil Industry: A Review. Front. Sustain. 2022; 3: 855551. |
[17] | Anyaoha KE, Zhang L. Technology-based comparative life cycle assessment for palm oil industry: the case of Nigeria. Environment, Development and Sustainability. 2023; 25: 4575–4595. |
[18] | Lestari F, Hawari NA, Maureka R, Casoni SM. Life Cycle Assessment Using Supply Chain Strategy on Palm Oil Agro-industry. Proceedings of the 3rd Asia Pacific International Conference on Industrial Engineering and Operations Management, Johor Bahru, Malaysia, 2022, September 13-15. |
[19] | Xu H, Ou L, Li Y, Hawkins TR, Wang M. Life Cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel Production in the United States. Environ. Sci. Technol. 2022; 56, 7512−7521. |
[20] | Pohlan J, Borgman J, Eiszner H. Potentiale nachhaltiger Anbausysteme in tropischen Hügellagen Mittelamerikas. Der Tropenlandwirt / Beiträge. April 1996; 97. Jahrgang, 95-103. |
[21] | Pohlan J, Borgman J. Der Soconusco auf dem Weg zu einem nachhaltigen tropischen Obstbau. Der Tropenlandwirt/ Beiträge. Oktober 1998; 99. Jahrgang, 181-194. |
[22] |
Comité Estatal de Información Estadística y Geográfica de Chiapas. 2024.
https://www.ceieg.chiapas.gob.mx/productos/files/MAPASTEMREG/REGION_X_SOCONUSCO_Post.pdf |
[23] | Servicio de Información Agroalimentaria y Pesquera. 2023. |
[24] | Instituto Nacional de Geografía y Estadística (INEGI) 2021. Uso de suelo y vegetación, escala 1: 250000 serie VII. Instituto Nacional de Estadística y Geografía. México. |
[25] | SIAP 2022. Cierre de la producción agrícola. México. Obtenido de Cierre de la producción agrícola 2021. |
[26] | Federación Mexicana de Palma de Aceite (FEMEXPALMA). “Anuario Estadístico FEMEXPALMA 2023: México palmero en cifras”. México DF. |
[27] | Pohlan HAJ, Salazar Centeno DJ. Gerencia de fincas cafetaleras a través de la metodología del sistema de semáforo y buenas prácticas agrícolas. En: Memorias de los Talleres de Agroecología y Roya del Café en Mesoamérica y República Dominicana. 2017; 19-27. |
[28] | Corley RHV, Tinker PBH. The Oil Palm. 5th edition. Wiley-Blackwell. 2015; ISBN: 978-1-4051-8939-2. |
[29] | Keutgen N. The Fortaleza Model and their attributes. 2015; Personal communication. |
[30] |
Naciones Unidas. La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev.3), Santiago. 2018.
https://repositorio.cepal.org/bitstream/handle/11362/40155/24/S1801141_es.pdf |
[31] | Solidaridad. Barómetro del Aceite de Palma 2022, la inclusión de pequeños productores en la cadena de valor. 2022; Texto: Sjoerd Panhuysen - Ethos Agriculture, Edición: Sarah Oxley - Solidaridad Europa, Diseño gráfico: Roelant Meijer – Tegenwind, 30 pp. |
[32] | RSPO. Theory of change. RSPO'S ROADMAP FOR SUSTAINABLE PALM OIL. 2020. |
[33] | Jezeer R, Pasiecznik, N (Eds.). Exploring inclusive palm oil production. 2019; Tropenbos International: Wageningen, the Netherlands. xx + 166 pp, ISBN 978-90-5113-145-1 (online version). |
[34] |
Salazar Centeno DJ, Pohlan HAJ, Marroquín Agreda FJ. Reflexiones sobre interacciones entre los Objetivos de Desarrollo Sostenible, la Agenda 2030, los límites planetarios y las buenas prácticas agrícolas en agroecosistemas con palma de aceite. Capítulo V, 199-215, In: Marroquín Agreda FJ, Pohlan HAJ, Salazar Centeno DJ, Villarreal Fuentes JM 2023 (Eds.). Manual para el productor de palma de aceite en México. Shaker Verlag Düren,
https://doi.org/10.2370/9783844092691 (Online-Gesamtdokument) |
[35] | Steffen W et al. Planetary boundaries: Guiding human development on a changing planet. Science. 2015; 347: 736-746, ISSUE 6223. |
[36] |
Rivera-Méndez YD, Romero H M. Los mitos ambientales de la palma de aceite. Palmas. 2018; 39 (4), 58-68. Available from:
https://www.researchgate.net/publication/354156436_Los_mitos_ambientales_de_la_palma_de_aceite |
[37] | Castiblanco C, Etter A, Aide TM. Oil palm plantations in Colombia: a model of future expansión. Environmental science & policy. 2013; 27: 172–183. http://dx.doi.org/10.1016/j.envsci.2013.01.003 |
[38] | Fitzherbert E B, Struebig MJ, Morel A, Danielsen F, Brühl CA, Donald PF, Phalan B 2008. How will oil palm expansion affect biodiversity? Trends in Ecology and Evolution. 2008; 23: 10, 538-545. |
[39] | Isaac-Márquez R.. La expansión del cultivo de la palma de aceite en Campeche. De los pequeños productores a la agroindustria transnacional. región y sociedad. 2021; 33, e1370. |
[40] | Gómez AM, Parra A, Pavelsky TM, Wise E, Villegas JC, Meijide A. Ecohydrological impacts of oil palm expansion: a systematic review. Environ. Res. Lett. 2023; 18 033005. |
[41] | Dislich C, Keyel AC, Salecker J, Kisel Y, Meyer KM, Auliya M, Barnes AD, Corre MD, Darras K, Faust H, Hess B, Klasen St, Knohl A, Kreft H, Meijide A, Nurdiansyah F, Otten F, Pe èr G, Steinebach St, Tarigan S, Tolle MH, Tscharntke T, Wiegand K. A review of the ecosystem functions in oil palm plantations, using forests as a reference. System Biol. Rev. 2016; pp. 000–000. 1. |
[42] | Salazar Centeno DJ, García Centeno LJ, Rodríguez González HR, Arsenio Calero C, Morales Navarro MA, Alverde Luna LO. Evaluación agroecológica de dos agroecosistemas con ganado bovino en Las Lagunas, Boaco, Nicaragua. 2017; 72 pp. |
[43] | Muñoz-Ibarra C L, López-Domínguez J, Cruz-Cruz CA. Bioestimulantes: el futuro de una agricultura sostenible. Revista Peruana de Divulgación Científica en Genética y Biología Molecular [en línea]. 2023; Lima: Editorial IGBM, (2): 46–52. ISSN: 2415–234X. |
[44] | Rivera-Solís LL, Benavides-Mendoza A, Robledo-Olivo A, González-Morales S. La salud del suelo y el uso de bioestimulantes. Agraria, 2023; 20: 3, 5-10. Vista de la salud del suelo y el uso de bioestimulantes |
[45] | 45 Rival A, Chalil D. Oil palm plantation systems are at a crossroads. OCL, published by EDP Sciences. 2023; 30: 28, |
[46] | Abubakar A, Ishak MY. An Overview of the Role of Smallholders in Oil Palm Production Systems in Changing Climate. 2022; Vol. 21, No. 5 (Suppl), 2055-2071. |
[47] | Fleiss S, Hill JK, McClean C, Lucey JM. Potential Impacts of Climate Change on Oil Palm Cultivation. A science-for-policy paper by the SEnSOR programme. 2017; This research is funded by the University of York, UK. J Lucey is funded by a NERC Knowledge Exchange fellowship. 1-16. |
[48] |
Ayala Mantilla MJ. Análisis de la Huella de Carbono y del Crecimiento del Cultivo de la Palma Africana en el Ecuador. 2012; Tesis de ingeniería ambiental, Universidad de San Francisco de Quito, 91 pp.
https://repositorio.usfq.edu.ec/bitstream/23000/2039/1/104355.pdf |
[49] | Vignola R, Watler W, Poveda Coto K, Berrocal A, Vargas A. Prácticas efectivas para la reducción de impactos por eventos climáticos: cultivo de palma aceitera en Costa Rica. 2017; 102 pp. |
[50] | GREPALMA. El sector de palma de aceite de Guatemala y sus aportes para la mitigación al Cambio Climático. pdf 15 pp. Obtenido el 10 de junio del 2023. |
[51] | Toledo Toledo E, Pohlan J, Gehrke Vélez M, Leyva Galan A. Green Sugarcane versus Burned Sugarcane – results of six years in the Soconusco region of Chiapas, Mexico. SUGAR CANE INTERNATIONAL. JANUARY/FEBRUARY 2005; VOL. 23, No. 1, 20-27. |
[52] |
Pelton JN. UN Sustainable Development Goals for 2030. In: Pelton, J. N., Madry, S. (eds) Handbook of Small Satellites. Springer, Cham. 2020.
https://www.un.org/sustainabledevelopment/sustainable-development-goals/ |
[53] | Salgia Patel S, Intveld A, Evan Seeyave E, Moberg E, Barreiro V. Measuring and Mitigating GHGs: Palm Oil. The Markets Institute at WWF, Change at the Speed of Life, 2022; pdf 17 pp. |
APA Style
Agreda, F. J. M., Centeno, D. J. S., Pohlan, H. A. J., Janssens, M. J. (2024). Gearing Present Oil Palm (Elaeis guineensis Jacq.) Agroecosystems in the Soconusco, Mexico Towards Sustainable and Good Agricultural Practices. International Journal of Applied Agricultural Sciences, 10(6), 259-274. https://doi.org/10.11648/j.ijaas.20241006.11
ACS Style
Agreda, F. J. M.; Centeno, D. J. S.; Pohlan, H. A. J.; Janssens, M. J. Gearing Present Oil Palm (Elaeis guineensis Jacq.) Agroecosystems in the Soconusco, Mexico Towards Sustainable and Good Agricultural Practices. Int. J. Appl. Agric. Sci. 2024, 10(6), 259-274. doi: 10.11648/j.ijaas.20241006.11
AMA Style
Agreda FJM, Centeno DJS, Pohlan HAJ, Janssens MJ. Gearing Present Oil Palm (Elaeis guineensis Jacq.) Agroecosystems in the Soconusco, Mexico Towards Sustainable and Good Agricultural Practices. Int J Appl Agric Sci. 2024;10(6):259-274. doi: 10.11648/j.ijaas.20241006.11
@article{10.11648/j.ijaas.20241006.11, author = {Francisco Javier Marroquín Agreda and Dennis José Salazar Centeno and Hermann Alfred Jürgen Pohlan and Marc Jan-Jules Janssens}, title = {Gearing Present Oil Palm (Elaeis guineensis Jacq.) Agroecosystems in the Soconusco, Mexico Towards Sustainable and Good Agricultural Practices }, journal = {International Journal of Applied Agricultural Sciences}, volume = {10}, number = {6}, pages = {259-274}, doi = {10.11648/j.ijaas.20241006.11}, url = {https://doi.org/10.11648/j.ijaas.20241006.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijaas.20241006.11}, abstract = {Dialectic interactions between the Sustainable Development Goals (SDG´s), the 2030 Agenda, planetary boundaries (PB) and good agricultural practices (GAP) in agroecosystems with oil palm have rarely been discussed. The main goal of this publication is analyzing reflections and realities about interactions between the 17 SDGs, the 2030 Agenda, nine PB and GAP in agroecosystems with oil palm. The methodological approach included the results of the different field practices during the First International Course of agroecological oil palm production in the Soconusco and consisted of a documentary analysis and focus group discussions. This offered possibilities to analyze qualitative and participative results of the traffic light system methodology (TLSM) and its key issues. The area of oil palm growing in the Soconusco and Istmo-Costa covers 4.37 % and was planted without burning of forestland. The SDG´s that are most strengthened with correct and timely management of the 13 key issues of TLSM, are: SDG2 (Zero Hunger), SDG3 (Good Health), SDG15 (Life on Earth), SDG6 (Clean Water and Sanitation), SDG13 (Climate Action) and SDG1 (Ending Poverty), being addressed in 100%, 69%, 69%, 54%, 54% and 31% of the key issues of the TLSM, respectively. Five PB reflect the realities in the Soconusco. For the biosphere integrity in the oil palm agroecosystems of the Soconusco, the oil palm stands out with growth recordings up to 10 m eco-height and 100000 m³/ha eco-volume, outperforming the annual oil crops sunflower, rapeseed and soybean. Similarly, oil palm dominates the three annual crops for their respective Eco-capacity, decreasing from 41.54 for oil palm down to 0.3 for soybean. The biochemical flow in the oil palm agroecosystems of the Soconusco reveals that the extraction of N from the soil to produce one ton of palm oil is 47 kg, which is 110.6%, 104.3% and 570% lower than that extracted to produce one ton oil of rapeseed, sunflower and soybean, respectively. Additionally, one ton of palm oil extracts 8 kg of P from the soil, which is lesser than that extracted to produce one ton oil from rapeseed, sunflower and soybean. In all intercropping agroecosystems simulations in the Soconusco based on oil palm the most representative indicators of the combined intercrop assortment, are eco-capacity and/or recycling indices as e.g. the K-Olson index of total yearly litter fall. Eco-volume remains a major yardstick for monitoring the partial fulfillment of the five most relevant PB. }, year = {2024} }
TY - JOUR T1 - Gearing Present Oil Palm (Elaeis guineensis Jacq.) Agroecosystems in the Soconusco, Mexico Towards Sustainable and Good Agricultural Practices AU - Francisco Javier Marroquín Agreda AU - Dennis José Salazar Centeno AU - Hermann Alfred Jürgen Pohlan AU - Marc Jan-Jules Janssens Y1 - 2024/11/13 PY - 2024 N1 - https://doi.org/10.11648/j.ijaas.20241006.11 DO - 10.11648/j.ijaas.20241006.11 T2 - International Journal of Applied Agricultural Sciences JF - International Journal of Applied Agricultural Sciences JO - International Journal of Applied Agricultural Sciences SP - 259 EP - 274 PB - Science Publishing Group SN - 2469-7885 UR - https://doi.org/10.11648/j.ijaas.20241006.11 AB - Dialectic interactions between the Sustainable Development Goals (SDG´s), the 2030 Agenda, planetary boundaries (PB) and good agricultural practices (GAP) in agroecosystems with oil palm have rarely been discussed. The main goal of this publication is analyzing reflections and realities about interactions between the 17 SDGs, the 2030 Agenda, nine PB and GAP in agroecosystems with oil palm. The methodological approach included the results of the different field practices during the First International Course of agroecological oil palm production in the Soconusco and consisted of a documentary analysis and focus group discussions. This offered possibilities to analyze qualitative and participative results of the traffic light system methodology (TLSM) and its key issues. The area of oil palm growing in the Soconusco and Istmo-Costa covers 4.37 % and was planted without burning of forestland. The SDG´s that are most strengthened with correct and timely management of the 13 key issues of TLSM, are: SDG2 (Zero Hunger), SDG3 (Good Health), SDG15 (Life on Earth), SDG6 (Clean Water and Sanitation), SDG13 (Climate Action) and SDG1 (Ending Poverty), being addressed in 100%, 69%, 69%, 54%, 54% and 31% of the key issues of the TLSM, respectively. Five PB reflect the realities in the Soconusco. For the biosphere integrity in the oil palm agroecosystems of the Soconusco, the oil palm stands out with growth recordings up to 10 m eco-height and 100000 m³/ha eco-volume, outperforming the annual oil crops sunflower, rapeseed and soybean. Similarly, oil palm dominates the three annual crops for their respective Eco-capacity, decreasing from 41.54 for oil palm down to 0.3 for soybean. The biochemical flow in the oil palm agroecosystems of the Soconusco reveals that the extraction of N from the soil to produce one ton of palm oil is 47 kg, which is 110.6%, 104.3% and 570% lower than that extracted to produce one ton oil of rapeseed, sunflower and soybean, respectively. Additionally, one ton of palm oil extracts 8 kg of P from the soil, which is lesser than that extracted to produce one ton oil from rapeseed, sunflower and soybean. In all intercropping agroecosystems simulations in the Soconusco based on oil palm the most representative indicators of the combined intercrop assortment, are eco-capacity and/or recycling indices as e.g. the K-Olson index of total yearly litter fall. Eco-volume remains a major yardstick for monitoring the partial fulfillment of the five most relevant PB. VL - 10 IS - 6 ER -